Efficient Independence-Based MAP Approach for Robust Markov Networks Structure Discovery
نویسندگان
چکیده
This work introduces the IB-score, a family of independence-based score functions for robust learning of Markov networks independence structures. Markov networks are a widely used graphical representation of probability distributions, with many applications in several fields of science. The main advantage of the IB-score is the possibility of computing it without the need of estimation of the numerical parameters, an NP-hard problem, usually solved through an approximate, data-intensive, iterative optimization. We derive a formal expression for the IB-score from first principles, mainly maximum a posteriori and conditional independence properties, and exemplify several instantiations of it, resulting in two novel algorithms for structure learning: IBMAP-HC and IBMAP-TS. Experimental results over both artificial and real world data show these algorithms achieve important error reductions in the learnt structures when compared with the state-of-the-art independencebased structure learning algorithm GSMN, achieving increments of more than 50% in the amount of independencies they encode correctly, and in some cases, learning correctly over 90% of the edges that GSMN learnt incorrectly. Theoretical analysis shows IBMAP-HC proceeds efficiently, achieving these improvements in a time polynomial to the number of random variables in the domain.
منابع مشابه
Robust stability of fuzzy Markov type Cohen-Grossberg neural networks by delay decomposition approach
In this paper, we investigate the delay-dependent robust stability of fuzzy Cohen-Grossberg neural networks with Markovian jumping parameter and mixed time varying delays by delay decomposition method. A new Lyapunov-Krasovskii functional (LKF) is constructed by nonuniformly dividing discrete delay interval into multiple subinterval, and choosing proper functionals with different weighting matr...
متن کاملEfficient and Robust Independence-Based Markov Network Structure Discovery
In this paper we introduce a novel algorithm for the induction of the Markov network structure of a domain from the outcome of conditional independence tests on data. Such algorithms work by successively restricting the set of possible structures until there is only a single structure consistent with the conditional independence tests executed. Existing independence-based algorithms havewellkno...
متن کاملMarkov network structure discovery using independence tests
We investigate efficient algorithms for learning the structure of a Markov network from data using the independence-based approach. Such algorithms conduct a series of conditional independence tests on data, successively restricting the set of possible structures until there is only a single structure consistent with the outcomes of the conditional independence tests executed (if possible). As ...
متن کاملEfficient Markov Network Structure Discovery using Independence Tests
We present two algorithms for learning the structure of a Markov network from data: GSMN* and GSIMN. Both algorithms use statistical independence tests to infer the structure by successively constraining the set of structures consistent with the results of these tests. Until very recently, algorithms for structure learning were based on maximum likelihood estimation, which has been proved to be...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1101.3381 شماره
صفحات -
تاریخ انتشار 2010